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Abstract 

Background Flowers in natural plant communities come in many shapes. Flowers with restrictive morphologies 
are considered complex, because only a subset of pollinators are able to learn how to access their nectar and pollen. 
Other flowers are easily accessible to diverse pollinating insects, and are regarded as simple. How and why do the two 
types of flowers coexist in natural plant communities?

We developed a spatially explicit evolutionary simulation framework to explore this question. We modeled 
the dynamics of two types of flowers (‘complex’ and ‘simple’) that differ in accessibility to their simulated pollina-
tors and in food rewards. The flowers are visited by a population of pollinators, which initially possess heritable 
variation in their ability to learn to forage on the complex flowers. We manipulated the pollinators’ flying distances 
and the flowers’ overall density, spatial distribution, and starting proportion of simple flowers. We recorded the result-
ing dynamics of the two flower types in the community, and of the pollinators’ learning rates, over 100 generations.

Results Complex and simple flowers coexisted under all simulated conditions. The steady-state community always 
contained more simple flowers than complex ones. Complex flowers attained higher frequencies when flowers were 
highly aggregated than when flower aggregation was low. Long-distance fliers evolved higher learning abilities 
than short-distance fliers. Pollinator learning abilities, in turn, were positively correlated with the frequency of complex 
flowers.

Conclusions Frequencies of complex flowers vary among natural plant communities. Our model predicts that this 
variation is shaped by the plants’ spatial distribution as well as by the cognitive abilities of their pollinators. The model 
generates novel and testable hypotheses for understanding how diversity in flower shapes is maintained in natural 
plant communities.

Keywords Evolutionary simulation, Flying distance, Flower morphology, Learning, Monte Carlo simulation, 
Pollination, Spatial aggregation, Spatially explicit model

Background
Plants and their insect pollinators have a long history of 
mutualistic, coevolutionary interactions. Multiple plant 
traits have evolved in response to pollinator-mediated 
selection over evolutionary time. Examples include flow-
ering phenology, floral display size, scent, color, and 
shape that are adapted to the anatomical and physiologi-
cal constraints of pollinating insects [2]. Flower anatomy 
has received particular attention within the framework 
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of ‘pollination syndromes’, which assumes convergent 
evolution of plant traits that attract specific functional 
groups of pollinators [8, 19]. For example, large, open, 
dish-shaped flowers are often associated with beetle pol-
lination [27]. Similarly, the length of floral spurs (spiked 
projections) and corolla tubes predict the main pollina-
tors of many plants [5].

Flower shapes have traditionally been classified accord-
ing to their morphological features, such as symmetry 
and the fusion of floral parts [13]. From a functional 
standpoint, floral morphologies can be placed along 
a continuum according to their accessibility to insect 
visitors [1]. Radially symmetrical, upward-facing, dish-
shaped flowers (e.g., buttercups) are highly accessible, 
and the learning required by pollinators to handle them 
effectively is typically minimal. These highly accessible 
flowers are visited by numerous insect taxa or functional 
groups, and are therefore considered to be generalized. 
Bilaterally symmetrical flowers, with fused tube-like 
or lever-like parts, restrict their visitors’ landing angle 
and require the insects to use specific motor routines 
to access their pollen and nectar. Inexperienced insect 
foragers require considerable time to interact with such 
flowers (e.g., lupines), and sometimes fail to feed from 
them altogether [16, 25]. For pollinators visiting these 
specialized flowers, flower handling and consequently 
also foraging performance gradually improve through 
learning [16, 25]. Such flowers are at the low accessibility 
end of the continuum and are visited by fewer insect taxa 
(e.g., [29, 31]). For brevity, we will use the terms ‘simple’ 
and ‘complex’, to denote flowers with high and low acces-
sibility to visitors, respectively, as the extremes of a con-
tinuum of phenotypic specialization (e.g., [1]).

Having fewer potential pollinators, complex flowers are 
predicted to be more rewarding to insect visitors than 
simple flowers [3]. This can result from stronger selection 
on complex flowers to produce nectar and pollen rewards 
that attract pollinators [3] and/or from fewer visitors that 
deplete the rewards. In support of this general predicted 
trend, nectar production increases with the flowers’ 
corolla tube length in a worldwide phylogenetically con-
trolled comparison across plant species. Nectar produc-
tion is also higher in plants with bilateral floral symmetry 
than in radially symmetrical flowers (Bodner & Keasar, 
unpublished).

Although complex flowers generally produce higher 
rewards, it is not straightforward to understand how pol-
linators learn to handle them. Standard learning theory 
predicts that behaviors that are rewarding in the short-
term are repeated more frequently by the learners [17], 
compared to when rewards are delayed. Simple flow-
ers provide inexperienced foragers with higher short-
term gains than complex flowers (owing to their easier 

handling). This raises the question what mediates pol-
linators’ persistence to visit and exploit complex flow-
ers. Previous behavioral work found that bumble bees, 
which are important pollinators in temperate areas, have 
a mild innate preference for complex flowers over sim-
ple ones [18]. This preference increased when complex 
flowers provided higher rewards or had colors favored 
by the foragers [14, 18]. In addition, successful foraging 
on complex flowers induced bumble bees to try to feed 
from additional flower species with other complex shapes 
[15]. A modeling study further suggests that long-lived 
pollinators, and those active early in the flowering sea-
son, gain the highest reproductive success from foraging 
on complex flowers. Such visitors have sufficient time (in 
terms of life expectancy or of season length) to learn to 
handle the complex morphologies and to reap their ben-
efits [12]. These additional mechanisms seem to promote 
foraging by pollinators on complex flowers.

The studies reviewed above indicate that learning is a 
key proximate mechanism that allows pollinators to visit 
and fertilize complex flowers, by reducing the flowers’ 
handling times. This opens new questions at the evolu-
tionary level, such as: how do the pollinators’ foraging 
choices of simple vs. complex flowers affect the frequen-
cies and dynamics of different flower morphologies in 
plant communities? In turn, how do these changes in 
flower frequencies drive the evolution of pollinator for-
aging behavior? Are the corresponding dynamics affected 
by the spatial distribution of the plants in their environ-
ment and by the pollinators’ mobility?

Pollinator-plant coevolution involves heritable 
responses of plants to the trait distribution of their pol-
linators and vice versa. The fitness of each partner in the 
interaction depends on the phenotype of the other part-
ner in a frequency-dependent manner. This interaction 
structure is readily modeled using evolutionary game 
theory [23]. Previous studies indeed used the game theo-
retical approach to predict the coexistence conditions in 
a two-plant-two-pollinator community [26], to under-
stand why long-tongued bees tend to avoid short-tubed 
(simple) flowers [21], and to model the extinction risks 
of rare plant species [10]. The latter model, which incor-
porated flower morphology, predicts an increase in spe-
cialization of foraging pollinators on rare plants as their 
floral morphological complexity increases. This allows 
complex flowers to persist at low frequencies in plant 
communities.

In the present work, we take a similar modeling 
approach and develop an individual-based evolutionary 
spatially explicit simulation model. The model tracks the 
changes in the frequencies of simple and complex flow-
ers in a plant community, and the changes in the capa-
bilities of their pollinators to learn to forage on complex 
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flowers. This allows us to examine whether the initial 
frequencies of the two flower types, their density, their 
spatial patchiness and the pollinators’ mobility, affect the 
plant-pollinator evolutionary dynamics. We tested the 
following specific hypotheses: (1) Higher encounter rates 
with complex flowers select for improved learning abili-
ties in pollinators, and (2) floral specialization coevolves 
with pollinator learning ability, as good learners prefer-
entially visit and pollinate complex flowers. We therefore 
predict that high pollinator flying abilities, flower densi-
ties, flower patchiness, frequencies of complex flowers, 
or a combination of these factors, will increase the pol-
linators’ encounters with complex flowers and select for 
improved learning abilities. This, in turn, will lead to sta-
ble and robust higher abundances of complex flowers in 
the plant community.

Methods
Model framework
The time-scale: The model involves two time-scales, con-
sisting of time steps (short term) and generations (long 
term). The length of each generation is determined by 
the pollinators’ longevity, corresponds to a flowering sea-
son, and varies between generations. 100 generations are 
modeled.

The spatial scale: The pollinators’ foraging environ-
ment is represented as a 2D square grid of 1000 × 1000 
cells. Simple and complex flowers are placed in the grid, 
using a patchy distribution. Each cell can contain a sim-
ple flower, a complex flower, or remain empty.

Flower distribution
The locations of the flower patches are randomly deter-
mined all over the grid in each generation and the num-
ber of flowers is equal in all patches. Flower locations 
in each patch are drawn randomly from a Normal dis-
tribution with a standard deviation of 40 cells and cen-
tered on each patch location. The initial proportions 
p of simple flowers, the total number of flowers N  , and 
the number of patches, are inputs to the model. At the 
beginning of each simulated generation, the numbers 
of simple and complex flowers in each patch are drawn 
from a Binomial distribution with probability equal to p , 
and we check that the overall proportions of simple and 
complex flowers in the environment correspond to p and 
1− p , respectively. The total number of flowers, and the 
number of patches, do not change over the course of the 
generations.

Both simple and complex flowers produce a potential 
food reward that is completely collected by pollinators 
during a single visit. The potential rewards produced by 
the two flower types are parameters in the model. Simple 
flowers produce smaller amounts of food rewards than 

complex flowers. Owing to their morphology, handling of 
simple flowers does not require learning. Thus, foragers 
that consecutively select rewarding simple flowers expe-
rience both constant food intake and handling times. Effi-
cient handling of complex flowers, in contrast, involves 
a series of visits to the complex flower type. Therefore, 
handling time declines and the pollinators’ ratio of energy 
intake per time invested increases as the foragers gain 
experience (see next section for details). Each visit by a 
pollinator contributes to a flower’s reproductive success 
(see below). To facilitate the interpretation of the results, 
we model the floral rewards as non-replenishing. Addi-
tionally, the model does not include ‘illegitimate’ visits, 
such as by nectar robbers.

Pollinator behavior
One hundred insect pollinators of one species are placed 
randomly in the environment at the beginning of each 
generation. At the start of the first generation, there is 
inter-individual genetic variation, drawn from a Uni-
form distribution, in the pollinators’ rate of learning 
how to forage on (i.e., effectively extract resources from) 
complex flowers. This generates a neutral starting point 
for each simulation, where all possible genotypes are 
equally represented. As in previous work [12], the learn-
ing curve of the ability to exploit complex flowers follows 
a logistic curve. It starts at a lower resource intake com-
pared to what is collected on simple flowers and attains a 
higher intake rate after the pollinator has visited several 
complex flowers and learning is completed. The logistic 
curve is based on the function c(v) = K

1+e−(αv−β) +m , in 
which c(v) is the reward obtained from complex flowers 
after spending v visits on each of them, m is the minimal 
reward without learning, and K  is the maximum addi-
tional reward that can be achieved through learning. 
Hence, K +m is the maximum reward after the learning 
process is completed. α and β are the shape and position 
parameters defining the learning process, respectively. β 
corresponds to the inflexion point of the logistic curve, 
and the pollinators’ learning rate is defined as 1/β . The 
earlier the inflexion point, the faster are pollinators 
able to learn how to forage on complex flowers, as they 
require less time to reap the higher possible reward on 
such flowers.

At each time step during a generation, each forager 
perceives the location (and thus distance) of the clos-
est simple and complex flower, regardless of the flowers’ 
depletion level. Then, the tendency to visit a complex 
flower rather than a simple one increases probabilisti-
cally (1) with a decreasing flying distance to the complex 
flower; (2) if the pollinator evaluates complex flowers as 
more rewarding that simple flowers, based on its past 
reward harvesting; (3) if it had recently visited depleted 
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simple flowers, hence evaluates them as low in terms of 
the reward they provide; (4) if it had not recently visited 
a depleted complex flower. Appendix 1 details how the 
simulation calculates the probability of each pollinator 
being attracted by a complex or a simple flower at each 
time step of its foraging process. Once a target flower is 
identified, the pollinator moves in the direction of this 
flower, hence the location of the target flower determines 
the direction of flight. The flying distance, on the other 
hand, is drawn from a normal distribution, whose mean 
is an additional parameter of the model. If the drawn dis-
tance is equal to or larger than the distance to the target 
flower, the pollinator lands on the target flower. Other-
wise, it lands on an empty grid cell, nearest to its pre-
decided flying distance. The probabilistic flower selection 
process is then repeated in the next time step.

For the sake of simplicity, the pollinators are assumed 
to be solitary and not to be central place foragers. That is, 
they do not provision colony members with food and do 
not return to their original location after foraging. Upon 
arriving at a flower, the forager collects the food reward 
instantaneously in the arrival time step. If several indi-
viduals land simultaneously on the same flower, a single 
one, drawn randomly, collects all the food resources. A 
flower recently visited by a pollinator has a low chance 
to be revisited immediately, but progressively recovers 
its attraction to the pollinator after several other flowers 
have been visited. Marking visited flowers with repellent 
scents that decay non-linearly over time, a well-docu-
mented behavior of pollinators, is a potential mechanism 
that reduces such revisits [9, 28]. Each pollinator has a set 
foraging lifespan, after which it dies. It may visit numer-
ous flowers during its lifetime. However, following exper-
imental evidence demonstrating a trade-off between 
learning ability and longevity in bees [7, 11], we imposed 
a survival penalty on the pollinators in the model, which 
increases linearly with their learning rate. Each genera-
tion stops when the last pollinator has died at the end of 
its foraging lifespan.

Selection on flowers and on pollinators
The reward collected by each forager and the number of 
visits to each flower are recorded throughout each gener-
ation. Natural selection acts at the end of each simulated 
generation. It determines the distribution of pollinator 
learning genotypes in the next generation and the fre-
quencies of simple and complex flowers, respectively. 
Individual pollinators that collect more food reproduce 
more, transmitting their learning genotype more fre-
quently to their progeny. We implicitly assume asexual 
reproduction without recombination and mutation in the 
pollinator population. Therefore, learning genotypes that 
are eliminated by selection cannot be recreated later, and 

the genetic variance in learning rate within the pollinator 
population thus progressively declines with time. Flow-
ers fully depend on pollinators to reproduce. They pro-
duce progeny in proportion to the number of visits they 
receive (even if they were depleted when visited). There-
fore, the relative frequencies of simple and complex flow-
ers reflect the frequencies at which they are visited.

The genetic composition of the pollinator population 
and the frequency of both types of flowers at the end of 
each generation are used to build the following genera-
tions. In all simulations performed, 100 generations were 
always sufficient to attain stable equilibria in the propor-
tion of the two flower types in the environment and in 
the number of learning genotypes.

The simulated scenarios: parameter settings
To assess how different parameters of the model influ-
ence the evolution of the plant-pollinator community, 
we varied the values of (1) the total number of flowers, 
(2) the initial proportion of simple flowers, (3) the num-
ber of flower patches (a few patches correspond to an 
aggregated flower distribution, while a large number of 
patches corresponds to a near-random distribution), and 
(4) the pollinators’ average per-time-step flying distance. 
We selected two values for each of the four parameters. 
This resulted in 16 combinations of conditions (Table 1), 
each of which was replicated 100 times. This set of sim-
ulations always predicts coexistence of the two flower 
types, possibly driven by changes in the flower commu-
nity composition, evolution of the pollinators’ learning 
rates, the survival cost associated with learning rate, or 
reward depletion from the flowers (see the Results sec-
tion). We thus ran additional simulations to disentangle 
the effects of these factors. The extra simulations were 
performed for the following scenario: 500 flowers with a 
0.2 initial frequency of simple flowers, flowers distributed 
over five patches, and pollinators with an average flying 
distance of 5.0 (see Table 1). To assess whether the pol-
linators’ learning-associated mortality might favor low 
learning rates and consequently increase their foraging 
on simple flowers, we eliminated the survival penalty. In 
a second set of simulations, we applied immediate refill-
ing of visited flowers (i.e., removed reward depletion) and 
found that the two flower types no longer coexisted (see 
Results). This raised the question whether reward deple-
tion promotes coexistence by favoring rare flower types, 
by modifying the pollinators’ learning rates, or both. We 
addressed this question through simulations that either 
fixed the frequencies of the two flower types (i.e., pre-
vented flower evolution) or eliminated evolution of the 
pollinators’ learning abilities. Simulations were replicated 
100 times for each of these additional combinations of 
conditions.
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Analysis of the model’s outputs
We calculated the mean values of the 100 replicates of 
each of the simulated scenarios with their associated 
standard errors across the simulated generations. We 
used a type I analysis of variance at the last generation of 
the simulation to evaluate how flower numbers, the ini-
tial proportion of simple flowers, the flowers’ patchiness, 
and the pollinators’ average flying distance affect the 
output variables. The ANOVA model included the main 
effects without interactions.

Results
Simple and complex flowers coexist in the environment
Both flower types persisted in all simulated scenarios, but 
simple flowers predominated: their average frequencies 
at generation 100 in the different scenarios ranged from 
0.51 to 0.88 (Fig.  1). Since complex flowers can rapidly 
provide higher rewards than simple flowers, it is some-
what surprising that simple flowers were not outcom-
peted by the complex ones after several generations of 
selection. A possible explanation could be the fact that 
the learning rate of the pollinators is associated with a 
corresponding linear decrease in their survival in the 
model. In fact, removal of the survival penalty reduced 
the steady-state mean proportion of simple flowers from 
0.60 to 0.50 (Fig. 2; ‘baseline’ vs. ‘no learning penalty’).

Another possible explanation concerns the role of an 
emergent negative frequency-dependent feedback loop 
in maintaining the coexistence of both flower types. Such 

a process could operate through flower depletion that 
changes the profitability of simple and complex flowers 
and leads to modified flower preferences by the pollina-
tors. For example, in a community dominated by simple 
flowers and by pollinators that specialize on them, deple-
tion of the simple flowers’ rewards can render them less 
profitable than the rare complex flowers. This would gen-
erate a selective advantage to pollinators with high learn-
ing abilities that are able to feed on complex flowers and 
that promote their pollination, increasing the frequencies 
of complex flowers in the community. A complementary 
process would then increase the fitness of simple flowers 
when rare and favor lower learning abilities for pollina-
tors. Consistent with the possible contribution of reward 
depletion to coexistence, the proportions of reward-
depleted flowers exceeded 0.7 after 200 time-steps in all 
simulated scenarios. Moreover, eliminating reward deple-
tion prevented coexistence, as rare simple flowers (initial 
frequency 0.2) went extinct (Fig. 2). Conversely, when we 
eliminated flower depletion in a scenario with a high (0.8) 
initial frequency of simple flowers, these flowers became 
fixed in the plant community (data not shown). However, 
the fitness of the two flower types (determined by the 
number of pollinator visits) did not clearly correlate with 
their frequencies in the plant community (results not 
shown). This differs from what is expected under nega-
tive frequency dependence.

Pollinator learning rates were higher when the fre-
quency of simple flowers was fixed at their initial 

Table 1 Parameter values used in the simulations. The number of flower patches defines the aggregation pattern of the flowers. 
Using the combination of parameters typed in bold letters, we performed additional simulations to identify the factors that allow 
coexistence of simple and complex flowers. These simulations involved fixed flower frequencies, fixed pollinator learning rates, no 
learning-survival trade-off, or no depletion of floral rewards

Parameter Values used in the simulations

Parameters for which different values were tested

 Total number of flowers 500, 1000

 Initial proportion of simple flowers 0.2, 0.8

 Number of flower patches 5, 100

 Mean of the distribution of the pollinators’ flying distances at each time step (expressed in number 
of cells in the grid)

5.0, 20.0

Parameters that remained fixed

 Grid size 1000 × 1000 cells

 Number of generations 100

 Number of pollinators at each generation 100

 Standard deviation of the distribution of the pollinators’ flying distances at each time step (expressed 
in number of cells in the grid)

5

 Reward on each simple flower (arbitrary unit) 50

 Parameter of the learning curve describing the reward on complex flowers (see text) K = 100 , α = 0.45 , m = 10

 Initial genetic variation in the parameter β Uniform distribution in the [1; 30] interval

 Lifespan of each pollinator. Linearly correlated to the learning rate Range [68; 300] time steps
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frequency than when flower frequencies were free to 
evolve (Fig. 3). When the pollinators’ learning evolution 
was eliminated, the steady state learning parameter was 
fixed at ~ 0.1. It increased to ~ 0.3 when learning was 
allowed to evolve (Fig.  3). Nevertheless, complex and 
simple flowers coexisted even when learning abilities 
were fixed (Fig. 2), suggesting that flower depletion has 
a stronger effect on the coexistence of the two flower 
types than learning evolution.

Flower aggregation favors complex flowers
The steady-state frequencies of simple and complex 
flowers were mainly affected by the number of flower 
patches (Table  2). The lowest frequencies of simple 
flowers (< 0.55 at steady-state) occurred under high 
flower aggregation (5 patches) and high mean flying 
distances (20 units/time step). Their highest frequen-
cies (> 0.75 at steady-state) were attained under low 
flower aggregation (100 patches), at both low (5) and 
high (20) mean flying distance. Intermediate frequen-
cies of simple flowers (0.6–0.7) were mostly character-
ized by low (5) flying distances (Fig. 1).

Long‑distance flights promote high learning abilities, 
which favor complex flowers
The pollinators’ average flying distance was a significant 
predictor of the steady-state proportions of complex 
flowers, but explained a relatively low fraction (9.41%) 
of the variation in these proportions. On the other hand, 
flying distance was the main variable that affected learn-
ing rates in the last generation, accounting for almost 
35% of the total variation (Table 2). Most of the initial 100 
learning genotypes were eliminated by selection during 
the simulation, and only 1–2 genotypes remained in the 
last generation. The pollinators’ mean ± SE learning abili-
ties in the last simulated generation were 0.09 ± 0.03 and 
0.44 ± 0.08 for short- and long-distance fliers, respectively 
(Fig. 4). Learning rate, in turn, was negatively correlated 
with the proportion of simple flowers (r = − 0.71 in gen-
eration 100, n = 1600, Fig.  5). We infer that manipulat-
ing the pollinators’ flying distance affected their learning 
abilities, and this in turn influenced the frequencies of 
complex and simple flowers.

Next, we explored how flying ability might promote 
the evolution of learning. Shorter-distance fliers initially 
spent more time in the simulation traveling between 

Fig. 1 Mean proportions of simple flowers over 100 generations for the simulated scenarios. The numbers in the legend refer to the number 
of patches, the initial proportion of simple flowers, and the pollinators’ mean flying distance. 5 and 100 patches correspond to high and low 
flower aggregation, respectively. The plots show average values for eight pairs of situations that differ in the total number of flowers (500 or 1000), 
and error bars are not plotted, for better readability
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flowers, with overall fewer visits to both simple and com-
plex flowers. Longer-distance fliers, on the other hand, 
visited more flowers during their lifetime in the first gen-
erations of the simulation, providing the pollinators with 
more opportunities to learn to handle complex flowers 
(Fig. 6). Accordingly, the learning abilities of the long-dis-
tance fliers increased during the first 20 simulated gen-
erations, while the learning abilities of the short-distance 
fliers declined (Fig. 4). Over the subsequent generations, 
the evolution of higher learning abilities in the long-dis-
tance fliers was accompanied by a decrease in the num-
ber of flowers they visited. Similarly, in the short-distance 
fliers learning rates declined over the generations while 
the number of visited flowers increased (Figs. 4, 6). The 
decline in the number of visited flowers may reflect the 
survival penalty associated with improved learning. Con-
sistent with this interpretation, removal of the survival 
penalty for pollinators in one of the simulated sets of con-
ditions increased their learning abilities (Fig. 3) and also 
the number of flowers that they visited per generation 
(35.0 ± 1.5 flowers in generation 100 with a learning pen-
alty, 69.3 ± 0.3 flowers after elimination of the penalty).

At the simulations’ last generation, the average total 
number of flowers visited per generation was similar 
for shorter-distance and longer-distance fliers (Fig. 6). It 

increased with total flower number (Table 2). This effect 
of flower density is actually not surprising, because forag-
ers can encounter more flowers as the abundance of flow-
ers in their environment increases.

Discussion
Variation in the accessibility of flowers to insect pol-
linators is a common feature in natural communities of 
entomophilous plants. We developed a spatially explicit 
Monte Carlo simulation model to explore how this varia-
tion is maintained, and whether pollinators play a role in 
its preservation. The simulations reproduce a stable and 
robust coexistence of complex and simple flowers in plant 
communities under numerous combinations of simulated 
parameter values. We predicted higher frequencies of 
complex flower under conditions that increase the pol-
linators’ flower encounter rates and learning abilities. In 
agreement with our hypothesis, the relative abundance of 
complex flowers increased with high flower aggregation 
and with high pollinators’ flying distances, which were 
associated with increased learning abilities. The remain-
ing variables that we explored, the initial frequency of 
simple flowers and the total number of flowers, had much 
smaller effects on the frequencies of complex and simple 
flowers. In the next paragraphs, we discuss how flower 

Fig. 2 Mean ± SE frequencies of simple flowers in the plant communities under a baseline set of conditions (500 flowers, initial proportion 
of simple flowers 0.2, 5 patches, flying distance 5 units/time step), compared with four modified models: fixed frequencies of simple and complex 
flowers, fixed learning genotypes, elimination of the survival penalty associated with learning rate, and elimination of flower depletion
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aggregation and high pollinator learning abilities may 
increase the proportions of complex flowers in a plant 
community with both types of flowers. We also consider 
and discount the role of negative frequency selection in 
promoting coexistence.

The flowers’ spatial distribution was the main factor 
that affected the relative abundances of the two flower 
types (Fig. 1, Table 2). We propose that this effect reflects 
two realistic choice rules that we incorporated into the 
model. First, pollinators do not perceive flowers that 

they had visited recently, and this rule prevents forag-
ers from revisiting the same flowers repeatedly. A pol-
linator that forages in small patches (5 or 10 flowers/
patch) is expected to quickly visit all the complex flowers 
in the patch, because complex flowers are generally the 
less common morph (Fig.  1). The forager does not per-
ceive these recently visited flowers as potential targets 
for revisits for the next few time steps. Instead, it faces a 
choice between a simple flower that it had not yet visited 
in its current patch and a complex flower in a different 

Fig. 3 Mean ± SE values of the learning rate parameter under a baseline set of conditions (500 flowers, initial proportion of simple flowers 0.2, 5 
patches, flying distance 5 units/time step), compared with four modified models: fixed frequencies of simple and complex flowers, fixed learning 
genotypes, elimination of the survival penalty associated with learning rate, and elimination of flower depletion

Table 2 Model coefficients (± SE) of ANOVAs done at the last generation of simulations for the four independent variables, and the 
corresponding percentage of the variance in the model’s output variables, explained by each independent variable (in brackets). ↑ and 
↓ denote positive and negative effects, respectively. The number of flower patches defines the aggregation pattern of the flowers in 
the environment

Explanatory variables Dependent variables

Proportion of simple flowers Learning rate Number of flowers visited

Total number of flowers 1.05 ×  10–4 ± 7.35 ×  10–6 (3.02) ↑ − 2.45 ×  10–4 ± 2.01 ×  10–5 (4.19) ↓ 2.57 ± 2.02 (25.71) ↑
Initial proportion of simple flowers 5.87 ×  10–2 ± 6.12 ×  10–3 (1.36) ↑ − 2.43 ×  10–1 ± 1.68 ×  10–2 (5.94) ↓ 14.55 ± 1.74 (3.09) ↑
Number of flower patches 2.52 ×  10–3 ± 3.87 ×  10–5 (62.63) ↑ − 1.95 ×  10–3 ± 1.06 ×  10–4 (9.64) ↓ 0.04 ± 0.01 (0.45) ↑
Mean flying distance of pollinators − 9.27 ×  10–2 ± 3.67 ×  10–3 (9.41) ↓ 3.53 ×  10–1 ± 1.01 ×  10–2 (34.93) ↑ 2.28 ± 1.05 (0.21) ↑
Residuals (23.57) (42.29) (70.55)
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Fig. 4 Learning rate parameter of short- and long-distance fliers over the generations. Means (± SE) are pooled over all 8 combinations 
of conditions with either a low (5 units/time step; closed circles) or a high (20 units/time step; open circles) flying distances

Fig. 5 The mean (± SE) frequencies of simple flowers at generation 100, plotted as a function of the mean (± SE) learning abilities, in the 16 
combinations of simulated conditions. Symbols and shading denote different combinations of flower aggregation (low: 100 patches, high: 5 
patches) and pollinator mean flying distances (low: 5 units/time step, high: 20 units/time step)
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patch. According to another decision rule implemented 
in the model, pollinators consider both previous reward 
and flying distance when choosing which flower type to 
visit. This favors the nearby simple flowers over the com-
plex, more distant ones, under low flower aggregation. 
This selective advantage of simple flowers is predicted to 
decline when flowers are aggregated into large patches, 
because of the larger number of complex flowers avail-
able within each patch.

We also considered a negative frequency-dependent 
selection process, driven by faster reward depletion 
in the common flower type than in the rare one, as a 
mechanism of coexistence. In support of this possibil-
ity, elimination of flower depletion led to extinction of 
the rare flower type. However, the fitness of both flower 
types did not show a clear negative correlation with their 
frequency in the plant community, as would be expected 
under negative frequency dependence. This suggests a 
stronger role for reward depletion than for negative fre-
quency dependence in promoting coexistence of simple 
and complex flowers.

The frequencies of complex flowers also increased 
when the pollinators’ flying distance was high. This effect 
seems to be indirect, and mediated through an increase 
in learning abilities of long-distance fliers. Higher 

learning abilities, in turn, result in more visits to complex 
flowers and increase their fitness (Fig. 5).

Figure  5 illustrates, among other things, combined 
effects of flower aggregation and learning rate on the 
steady-state frequencies of the two flower types. A pos-
sible interpretation is that high learning rates reduce the 
reward-based preference to simple flowers, while high 
flower aggregation reduces the distance-based preference 
to these flowers. Hence, simple flowers are least favored 
when flower aggregation and learning abilities are high, 
and most favored under conditions of low flower aggre-
gation and learning abilities. When the two effects act 
in opposite directions (high flower aggregation and low 
learning rates, or low flower aggregation and high learn-
ing rates), intermediate frequencies of simple flower 
evolve.

Life-history trade-offs may impose constraints on 
learning abilities in pollinators. For example, brain size 
was proposed as a limiting factor of associative learn-
ing in bees [4]. This can prevent fixation of the high-
est learning genotypes in the pollinator population, and 
of the complex flowers in the plant community. Our 
model implements the trade-off by coupling learning 
rate with a survival cost, as observed in real situations 
[7, 11]. Other costs of learning ability (e.g., in terms of 

Fig. 6 The number of flowers visited by short-distance and long-distance fliers over the generations. Means (± SE) are pooled over all 8 
combinations of conditions with either a low (5 units/time step; closed circles) or a high (20 units/time step; open circles) flying distances
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foraging speed [30], or performance in resource-poor 
environments [24]) would probably have similar effects.

Finally, our model currently includes simplifying 
assumptions that limit its realism, and that can be 
relaxed in future work. Further potential development 
of the model may incorporate more than one pollina-
tor type (e.g., a specialist and a competing generalist 
species), explicit modeling of nectar vs. pollen foraging 
[20], reward replenishment (nectar) or staggered pres-
entation (pollen), constraints on morphology-reward 
relationships [6], and central place foraging.

Conclusions
We present a modeling framework to help understand 
how simple and complex flowers coexist in plant com-
munities. The model generates evolutionary predic-
tions that can be evaluated against observations from 
natural plant-pollinator communities, as well as behav-
ioral predictions that can be tested in controlled labora-
tory experiments. At the evolutionary level, the model 
predicts the frequency of complex flowers to increase 
with spatial aggregation and pollinator flying distances. 
These predictions can be tested by comparing flo-
ral accessibility features (such a symmetry and depth) 
and pollinator flight ranges between increasingly frag-
mented habitats. At the behavioral level, increasing 
learning abilities are expected to improve pollinators’ 
success in foraging on complex flowers. This prediction 
can be tested by exposing pollinators to metabolites 
that interfere with learning and memory (e.g., neo-
nicotinoids; [22]) and measuring the resulting change 
in their foraging performance on simple vs. complex 
flowers. Such tests will provide further insights on the 
selective processes that mold flower shapes.
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